Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology.
نویسندگان
چکیده
Apoptosis-inducing factor (AIF) deficiency compromises oxidative phosphorylation. Harlequin mice, in which AIF is downregulated, develop a severe mitochondrial complex I (CI) deficiency, suggesting that Harlequin mice may represent a natural model of the most common oxidative phosphorylation disorders. However, the brain phenotype specifically involves the cerebellum, whereas human CI deficiencies often manifest as complex multifocal neuropathologies. To evaluate whether this model can be used as to study CI-deficient disorders, the whole brain of Harlequin mice was investigated during the course of the disease. Neurodegeneration was not restricted to the cerebellum but progressively affected thalamic, striatal, and cortical regions as well. Strong astroglial and microglial activation with extensive vascular proliferation was observed by 4 months of age in thalamic, striatal, and cerebellar nuclei associated with somatosensory-motor pathways. At 2 months of age, degenerating mitochondria were observed in most cells in these structures, even in nondegenerating neurons, a finding that indicates mitochondrial injury is a cause rather than an effect of neuronal cell death. Thus, apoptosis-inducing factor deficiency induces early mitochondrial degeneration, followed by progressive multifocal neuropathology (a phenotype broader than previously described), and resembles some histopathologic features of devastating human neurodegenerative mitochondriopathies associated with CI deficiency.
منابع مشابه
Vital functions of Apoptosis Inducing Factor (AIF)
In many models of programmed cell death, the mitochondrial protein AIF translocates to the nucleus, where it induces the chromatin condensation and DNA degradation. However, today it is well established that this flavoprotein is bifunctional. In addition to its lethal function in the nucleus of dying cells, AIF plays a vital bioenergetic role in healthy ones by regulating mainly the activity of...
متن کاملTemporal pattern of neurodegeneration, programmed cell death, and neuroplastic responses in the thalamus after lateral fluid percussion brain injury in the rat.
The effects of traumatic brain injury (TBI) on the thalamus are not well characterized. We analyzed neuronal degeneration and loss, apoptosis, programmed cell death-executing pathways, and neuroplastic responses in the rat thalamus during the first week after lateral fluid percussion injury (LFPI). The most prominent neurodegenerative and neuroplastic changes were observed in the region contain...
متن کاملEconazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways
Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...
متن کاملEconazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways
Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...
متن کاملSchizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration
Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 66 9 شماره
صفحات -
تاریخ انتشار 2007